Extensions 1→N→G→Q→1 with N=C24 and Q=C3⋊S3

Direct product G=N×Q with N=C24 and Q=C3⋊S3
dρLabelID
C24×C3⋊S3144C2^4xC3:S3288,1044

Semidirect products G=N:Q with N=C24 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C24⋊(C3⋊S3) = PSO4+ (𝔽3)φ: C3⋊S3/C1C3⋊S3 ⊆ Aut C24129+C2^4:(C3:S3)288,1026
C242(C3⋊S3) = (C2×C6)⋊4S4φ: C3⋊S3/C3S3 ⊆ Aut C24366C2^4:2(C3:S3)288,917
C243(C3⋊S3) = C22×C3⋊S4φ: C3⋊S3/C3S3 ⊆ Aut C2436C2^4:3(C3:S3)288,1034
C244(C3⋊S3) = (C2×C6)⋊S4φ: C3⋊S3/C3S3 ⊆ Aut C24246C2^4:4(C3:S3)288,1036
C245(C3⋊S3) = C6224D4φ: C3⋊S3/C32C2 ⊆ Aut C2472C2^4:5(C3:S3)288,810
C246(C3⋊S3) = C22×C327D4φ: C3⋊S3/C32C2 ⊆ Aut C24144C2^4:6(C3:S3)288,1017

Non-split extensions G=N.Q with N=C24 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C24.(C3⋊S3) = C2×C6.7S4φ: C3⋊S3/C3S3 ⊆ Aut C2472C2^4.(C3:S3)288,916
C24.2(C3⋊S3) = C2×C625C4φ: C3⋊S3/C32C2 ⊆ Aut C24144C2^4.2(C3:S3)288,809
C24.3(C3⋊S3) = C23×C3⋊Dic3central extension (φ=1)288C2^4.3(C3:S3)288,1016

׿
×
𝔽